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New drugs to control early stages of albuminuria: GLP1-RAs, SGLT2is, Finerenone

The chronic kidney disease (CKD) ‘blind spot’ concept establishes that most patients with CKD and mild albuminuria preceding an estimated glom-
erular filtration rate < 60 mL/min/1.73 m2 are not recognized nor treated. CKD will progress and 50% of functional kidney mass will be lost before 
diagnosis. Albuminuria is a major risk factor for the progression of cardiovascular disease (CVD), starting from values not yet considered as defining 
CKD. The key point is early diagnosis of CKD as a risk factor for CVD and the widespread implementation of albuminuria screening, the assessment  
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of early biomarkers and new therapies application to control early stages of albuminuria will diminish the cardiovascular burden related to CKD. 
GLP1-RAs, glucagon-like peptide 1 receptor agonists; SGLT2is, sodium-glucose cotransporter-2 inhibitors; UACR, urinary albumin/creatinine ratio.

Abstract

Chronic kidney disease (CKD) is projected to become a leading global cause of death by 2040, and its early detection is critical for effective and timely 
management. The current definition of CKD identifies only advanced stages, when kidney injury has already destroyed >50% of functioning kidney 
mass as reflected by an estimated glomerular filtration rate <60 mL/min/1.73 m2 or a urinary albumin/creatinine ratio >six-fold higher than physio-
logical levels (i.e. > 30 mg/g). An elevated urinary albumin-excretion rate is a known early predictor of future cardiovascular events. There is thus a 
‘blind spot’ in the detection of CKD, when kidney injury is present but is undetectable by current diagnostic criteria, and no intervention is made 
before renal and cardiovascular damage occurs. The present review discusses the CKD ‘blind spot’ concept and how it may facilitate a holistic ap-
proach to CKD and cardiovascular disease prevention and implement the call for albuminuria screening implicit in current guidelines. Cardiorenal 
risk associated with albuminuria in the high-normal range, novel genetic and biochemical markers of elevated cardiorenal risk, and the role of heart 
and kidney protective drugs evaluated in recent clinical trials are also discussed. As albuminuria is a major risk factor for cardiovascular and renal 
disease, starting from levels not yet considered in the definition of CKD, the implementation of opportunistic or systematic albuminuria screening 
and therapy, possibly complemented with novel early biomarkers, has the potential to improve cardiorenal outcomes and mitigate the dismal 2040 
projections for CKD and related cardiovascular burden.

Keywords Albuminuria • Chronic kidney disease • Cardiovascular disease • CKD blind spot • Cardiorenal disease

Introduction
According to the Global Burden of Disease Study, chronic kidney dis-
ease (CKD) was the 16th and 10th global cause of death in 2016 and 
2019, respectively, and it is likely to climb higher by 2040.1–3 CKD 
thus ranks among the fastest-growing disease burdens and preventive 
initiatives are urgently needed to minimize its impact on cardiovascular 
outcomes and healthcare costs.

CKD is diagnosed when abnormalities of kidney structure or function 
with negative consequences for health are present for more than 
3 months. Currently, the most commonly used criteria to categorize 
CKD are albuminuria (>30 mg/24 h or >30 mg/g urinary creatinine) or 
a significant fall (<60 mL/min/1.73 m2) in the estimated glomerular filtra-
tion rate (eGFR).1 The cut-off level for albuminuria is more than six-fold 
greater than physiological levels, and the association between the urinary 
albumin/creatinine ratio (UACR) and cardiovascular disease (CVD) risk is 
linear from levels of 1 mg/g.4 Indeed, the Losartan Intervention For 
Endpoint reduction study identified UACR thresholds ranging from 6.45 
to 9.37 mg/g (depending on sex and type of analysis) that were already as-
sociated with increased CVD risk.5,6 Additionally, meeting the definition of 
CKD following the eGFR threshold implies that >50% of the functional 
kidney mass has already been lost,7 indicating that these diagnostic criteria 
and thresholds distinguish only late-stage disease.

The global prevalence of CKD oscillates between 11 and 13%,8,9 and 
the majority of patients are in the G3 stage (eGFR 30–59 mL/min/ 
1.73 m2).10 This distribution pattern further highlights a major short-
coming in the current conceptualization of CKD, namely that early- 
stage disease is often overlooked. In the majority of clinical conditions, 
milder early stages are generally more prevalent than the more severe 
later stages. In this sense, CKD stages G1 and G2––evidence of kidney 
injury (UACR >30 mg/g) in the presence of normal (≥90) or mildly de-
creased (60–90 mL/min/1.73 m2) eGFR––should theoretically be more 
common than G3, but we lack diagnostic tools to identify them. This 
has been described as the blind spot in CKD, namely that kidney injury 
is already present with a progressive loss of eGFR from normal values of 
∼120 to <60 mL/min/1.73 m2.7,11 This unmet need is clearly illustrated 
in the case of autosomal dominant polycystic kidney disease (ADPKD), 

a condition where sonography strongly supports the diagnosis of CKD 
decades before the current eGFR and UACR thresholds are met.7,11

Additional diagnostic tests are thus needed for early identification of 
the disease (Table 1). Notably, the currently available eGFR and albumin-
uria indicators are not typically assessed in most patients, contributing to 
the invisibility (and late diagnosis) of CKD. Moreover, physicians’ un-
awareness of the concept of CKD adds to the high cardiovascular burden 
even when eGFR and albuminuria measures are available.12 Thus, CKD 
may progress untreated until diagnosed at more advanced stages, at 
which time the impact of treatment is likely to be suboptimal.13 This in-
evitably increases the risk of adverse cardiorenal outcomes, as no regen-
erative therapy is available for CKD, and it does not typically regress.13

Albuminuria and low eGFR are independent predictors for a higher 
risk of CVD-related death that, in patients with CKD, is greater than the 
risk of needing kidney replacement therapy,14,15 and a high UACR clear-
ly increases renal and CVD risk even against a background of preserved 
eGFR.16,17 Furthermore, patients presenting with both albuminuria and 
diminished eGFR are at high cardiorenal risk, with major consequences 
for CVD-related morbidity and mortality. Based on these premises, the 
2021 guidelines of the European Society of Cardiology (ESC) on cardio-
vascular prevention18 recommend measuring albuminuria and eGFR 
as part of routine assessment. UACR or eGFR values indicative of 
moderate or severe CKD automatically place the individual at high or 
very-high CVD risk, respectively, regardless of the presence or not of 
traditional cardiovascular risk factors.19 Correspondingly, adding albu-
minuria to the Systematic Coronary Risk Estimation19 scale increases 
the prevalence of high or very-high CVD risk in patients with CKD.18

Controlling albuminuria through therapeutic intervention is associated 
with a lower risk of renal and cardiovascular outcomes independent of 
eGFR values.20,21 Former guidelines proposed that albuminuria should 
be routinely measured in patients at high risk of CVD owing to the pres-
ence of arterial hypertension, Type 2 diabetes mellitus (T2DM), obesity, 
heart failure (HF), coronary artery disease, or hyperlipidaemia.22

However, given the high cost associated with CKD, which in Europe ex-
ceeds that of cancer and T2DM,1 and the low cost of measuring albu-
minuria, in addition to the need for identifying previously undetected 
patients at high CVD risk, the 2021 ESC cardiovascular prevention 
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guidelines propose that opportunistic or systematic assessment of albu-
minuria should be considered in all men above the age of 40 and in all 
women above the age of 50 (or post-menopausal).19 Unfortunately, al-
buminuria is assessed in only 35% of patients with T2DM and in 4% of 
those with hypertension in the best of circumstances.23 A similar situ-
ation exists for individuals with normoalbuminuria in the normal-high 
blood pressure (BP) range who are already at increased risk but for 
whom no intervention is recommended through guidelines for hyper-
tension, T2DM, or HF.24 The low implementation of albuminuria as-
sessment has been partly attributed to the lack of effective and safe 
treatments; however, a recent wave of clinical trials and scientific guide-
lines now emphasize the actionability of high albuminuria or low eGFR 
to diagnose CKD. This might promote the prescription of new drugs 
such as sodium-glucose cotransporter-2 inhibitors (SGLT2is), 
glucagon-like peptide 1 receptor agonists (GLP1-RAs), and novel min-
eralocorticoid receptor antagonists (MRAs) such as finerenone (see la-
ter). While the kidney and cardiovascular protective effects of these 
drugs were first demonstrated in T2DM, the indications are rapidly ex-
panding to non-diabetic populations who are also at high CVD risk, in-
cluding the SGLT2i dapagliflozin for CKD or HF or the GLP1-RAs 
semaglutide for overweight or obesity.25,26

Here, we review the current status of albuminuria as a cardiorenal risk 
factor, including novel factors and biomarkers that promote albuminuria 
and facilitate the early induction of cardiorenal injury, together with 
shortcomings in their implementation and awareness. We also discuss 
novel approaches regarding the CKD ‘blind spot’ (Figure 1 and 
Graphical Abstract). Finally, we review recently available therapeutic strat-
egies for patients with CKD that can improve cardiorenal outcomes.

Current status of albuminuria as a 
cardiorenal risk factor
The cardiorenal risk accompanying CKD begins under normal UACR 
with preserved eGFR,24,27 and endothelial dysfunction is evident at 

these early stages.28 Several other factors are known to increase the 
risk of developing albuminuria, including genetic background, 
peripartum-related factors, hypertension, T2DM, obesity, metabolic 
syndrome, smoking, and older age. The development of associated 
CVD develops in conjunction with progression of albuminuria and 
low eGFR.

Genetic background
Genetic diseases are typically under-represented in kidney disease regis-
tries. While ADPKD is considered as a single entity, others are grouped 
into a miscellaneous section or remain undiagnosed.29,30 Interestingly, 
the mean age at kidney failure in ADPKD is 60 years, reflecting that in-
heritance may also influence the risk of CKD in older age. Most cases of 
hypertensive nephropathy in African Americans––who have the highest 
incidence of hypertensive nephropathy––are known to be associated 
with a genetic variant in the apolipoprotein A-I gene that pre-disposes 
to CKD triggered by diverse stimuli such as viruses.31,32 Genetic back-
ground promotes additional mechanisms pre-disposing to albuminuria. 
For instance, variants in genes encoding for transporters that recover fil-
tered albumin in the proximal tubular cells are associated with albumin-
uria.33 Also, other genetic kidney diseases associated with albuminuria 
with or without concomitant haematuria, such as Alport syndrome, 
are more common than previously thought.29 Thus, family history of al-
buminuria or CKD is a key risk factor.

Preterm and low birth weight
Optimal cardiovascular health during pregnancy prevents the develop-
ment of lifelong CVD in offspring, as maternal cardiovascular health in-
fluences future cardiovascular health in children during early 
adolescence.34 Preterm birth (born before 37 weeks) and low birth 
weight (<2500 g) are associated with a lower number of nephrons, 
which has been considered as the initial factor for the early develop-
ment of hypertension, albuminuria, proteinuria, obesity, and CKD.35

Although total nephron number can vary considerably in normal 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Current issues in the early diagnosis of CKD that should be addressed to optimise cardiovascular risk 
reduction, and proposed research

Issue Plain language summary Needed research

CKD ‘blind spot’. Current diagnostic tests and 
thresholds for those tests allow most causes of 
CKD to progress undiagnosed (and untreated) for 
decades, with some exceptions (e.g. ADPKD 
where imaging allows diagnosis of CKD decades 
earlier than eGFR or UACR thresholds)

Lack of tools for earlier diagnosis of CKD and 
treatment of CVD risk

Develop novel diagnostic tests that, alone or in 
combination with subclinical albuminuria (e.g. 

UACR 10–30 mg/g), allow for an earlier 
diagnosis (and treatment) of CKD. Potential 
tools include imaging and systems biology of 

urine and/or plasma

Poor implementation. Suboptimal uptake of 
albuminuria testing

Tools for earlier diagnosis of CKD and treatment 
of cardiovascular risk are available but not used

How to implement current 2021 ESC CVD 
prevention guidelines in which eGFR and UACR 
testing are entry level steps, similar to serum 

glucose and cholesterol, for CVD risk 
management

Poor awareness. Suboptimal translation into 
routine clinical practice from eGFR and UACR 
values to a chart diagnosis of CKD

Tools for earlier diagnosis of CKD and treatment 
of cardiovascular risk are available and 

implemented but are not translated into clinical 
diagnosis or therapeutic decisions

How to improve awareness of the therapeutic 
impact of a CKD diagnosis at all healthcare 

levels, from primary to specialised care

ADPKD, autosomal dominant polycystic kidney disease; CKD, chronic kidney disease; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin/ 
creatinine ratio.
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kidneys,36 a seminal study by Keller et al. demonstrated that nephron 
number is typically lower in patients with hypertension than in peers 
with normal BP.37 Preterm birth is a risk factor for CKD from child-
hood into mid-adulthood and smaller body size at birth is associated 
with an increased risk for developing CKD in men, while preterm deliv-
ery can also be associated with an increased risk in women.38,39 Low 
birth weight is associated with childhood proteinuria,40 but clinical man-
ifestations appear predominantly in adolescence, particularly obesity 
and reduced kidney volume.41,42 Beyond elevated BP and albuminuria, 
left ventricular remodelling and arterial stiffness may develop at this 
stage of life or later.43–45

Hypertension
Arterial hypertension increases the risk of albuminuria, starting from the 
stage of high-normal BP,46 particularly when isolated diastolic hyperten-
sion is present.47,48 Minor and continuous increases in systolic BP are as-
sociated with a higher risk of CVD, even when they remain within the 
so-called normal range (i.e. non-hypertension), and in the absence of other 
traditional risk factors.49 In addition, up to 25% of patients with sustained 
and treated hypertension develop albuminuria, indicating the progression 
of cardiorenal disease.50 Indeed, risk phenotypes identified with ambula-
tory BP monitoring are associated with the development of albuminuria, 
and a close relationship between night-time BP and development of albu-
minuria was described 20 years ago.51 Moreover, CKD is accompanied by 
increased visit-to-visit BP variability, which facilitates the progression of al-
buminuria.52 The impact of different antihypertensive drugs on the regres-
sion of albuminuria to normal (or near-normal) levels is variable and the 
management of patients with elevated albuminuria requires the use of spe-
cific drug combinations that are essentially coincidental with hypertension 

guidelines.53,54 Among first-line antihypertensive agents, those blocking 
the renin-angiotensin-aldosterone system and calcium channel blockers 
have been better documented in preventing or reducing albuminuria in 
clinical trials.54 Yet, new drugs that were initially conceived for the treat-
ment of T2DM have recently been shown to simultaneously decrease BP 
and albuminuria (see new drugs in section 4).

Because primary aldosteronism is a more common cause of essential 
hypertension than previously believed,55 appropriate screening in hyper-
tensive and diabetic populations is mandatory for the diagnosis and tar-
geted treatment of this highly modifiable cardiorenal risk factor.56

Masked uncontrolled hypertension is accompanied by increased 
out-of-clinic aldosterone secretion;57 although evidence is lacking from 
prospective clinical studies of albuminuria, this indicates that plasma al-
dosterone concentration and the aldosterone/renin ratio may serve as 
potential therapeutic targets for the early prevention of cardiorenal dis-
ease.58 In young individuals, however, elevated BP is usually accompanied 
by elevated pulse pressure and early vascular stiffness, both predicting la-
ter development and progression of cardiorenal disease.59,60

Women with peri- or post-partum hypertension represent a special 
category because exposure to adverse pregnancy outcomes, including 
hypertensive disorders of pregnancy, gestational T2DM, and preterm de-
livery, is associated with a higher risk of long-term CKD, with the risk of 
kidney failure greatest among women who experience pre-eclampsia 
[adjusted risk ratio 4.90; 95% confidence interval (CI) 3.56–6.74].29

Diabetes, obesity, and metabolic 
syndrome
T2DM is the principal cause of kidney failure. It is frequently preceded 
by a pre-diabetic state or metabolic syndrome and is often 

Figure 1 Illustration of CKD ‘blind spot’ concept and the different clinical settings in which measurement of albuminuria is mandatory to manage 
cardiorenal disease and prevent CVD outcomes.
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accompanied by overweight or visceral obesity. Renal risk starts early in 
metabolic syndrome and pre-diabetes, when pre-hypertension and al-
buminuria often also develop.61 Increases in systolic BP within the nor-
mal range are associated with body mass index and waist circumference 
values in the overweight range, as well as with increasing levels of fasting 
glycaemia, preceding the appearance of metabolic syndrome and pre- 
diabetes.49 Elevated aldosterone levels are frequently present in this 
early stage of cardiorenal disease in people with obesity and T2DM, fa-
cilitating the development of arterial hypertension, CKD, and HF.62

Expansion of visceral fat is tightly linked to CKD. Indeed, kidney failure 
is often accompanied by visceral obesity and treatments to protect the 
cardiorenal system must also include reduction of overweight.63

Impact of albuminuria on the heart
Elevated urinary albumin excretion seems especially predictive of HF, par-
ticularly in patients with T2DM, renal dysfunction, or both. Albuminuria is 
associated with the two phenotypes of HF, with preserved or reduced 
ejection fraction (HFpEF or HFrEF, respectively),64 but it is preferentially 
associated with the former.65 Albuminuria has been shown to reflect 
endothelial dysfunction, which is in line with the contemporary hypothesis 
that HFpEF is characterized by widespread microvascular dysfunction and 
chronic underlying inflammation.66 Interestingly, albuminuria is associated 
with atrial fibrillation, the most prevalent sustained arrhythmia in CKD.67

The underlying mechanisms potentially linking albuminuria and atrial fibril-
lation are a subject of intense investigation.

Smoking
Smoking has been associated with both the magnitude of albuminuria 
and the risk of CKD.68,69 The risk persists even after smoking cessation 
and the odds of CKD are higher in current and former smokers than in 
never smokers.68

Suboptimal implementation of clinical 
assessment of early chronic kidney disease
An unresolved issue in the diagnosis/management of CKD is the lack of 
implementation. With respect to eGFR, although serum creatinine is 
frequently determined whenever serum biochemistry is assessed, 
data from eGFR do not lead to a diagnosis of CKD when eGFR values 
are >60 mL/min/1.73 m2. Recent data from Sweden illustrate the ser-
iousness of this issue. Among over 50 000 patients who fulfilled bona 
fide criteria for CKD diagnosis (i.e. eGFR <60 mL/min/1.73 m2 on at 
least two occasions separated for longer than 3 months), only 23% 
had a diagnosis of CKD in their electronic health records.12,70 Among 
those with CKD, the diagnosis was less common than a diagnosis of 
cancer, diabetes, or HF, among others. There were, unfortunately, con-
sequences of this misdiagnosis for patient care. The use of nephrotoxic 
drugs was indeed more common among patients with CKD without a 
diagnosis of CKD. With respect to albuminuria, the key issue is that this 
index is not frequently assessed in everyday clinical practice (i.e. less of-
ten than recommended by clinical guidelines), even in high-risk popula-
tions. Importantly, both indicators, particularly albuminuria, should be 
assessed at least in those patients presenting with the classical risk fac-
tors for CVD and other facilitators (the new predictive biomarkers re-
viewed below) and should ideally be measured in all men above the age 
of 40 and all women above the age of 50, as indicated in the 2021 ESC 
cardiovascular prevention guidelines.19

Assessing the chronic kidney 
disease ‘blind spot’: new predictive 
biomarkers of albuminuria
Individuals not meeting the Kidney Disease Improving Global Outcomes 
(KDIGO) criteria for CKD (i.e. with both UACR <30 mg/g and eGFR 
>60 mL/min/1.73 m2) have been traditionally considered to be essentially 
not at risk for cardiorenal disease. However, retrospective clinical studies 
seem to support the opposite, demonstrating a continuous association be-
tween albuminuria levels and cardiorenal risk that starts within the normal 
range of albuminuria values.71,72 In terms of early prevention, novel clues 
are needed to identify those people who, despite having eGFR and albu-
minuria values within the normal range, already show subclinical kidney dis-
ease and are in the CKD blind spot (Figure 1). An obvious approach would 
be to lower the UACR threshold to diagnose CKD and, thereby, promote 
earlier treatment. As an alternative, UACR values may be combined with 
(or replaced by) other biomarkers. This will require a more thorough un-
derstanding of the molecular mechanisms involved in the early and subclin-
ical stages of albuminuria progression.24,73

Metabolome and proteome biomarkers
Among normoalbuminuric hypertensive subjects under chronic 
renin-angiotensin system (RAS) blockade, the molecular profile of urine 
differs between those below or within the high-normal UACR range 
(<10 mg/g or 10–30 mg/g, respectively). Protein and metabolic mar-
kers identified include those involved in inflammatory response, im-
mune system, lipid metabolism and energy metabolism, among 
others, pointing to defective tubular reabsorption and vascular injury 
already in the early subclinical condition of normal albuminuria.74,75 In 
particular, the levels of several metabolites previously associated with 
CVD and renal risk have been shown to be altered in people who 
are in the high-normal albuminuria range, supporting the vascular com-
ponent of albuminuria progression beyond the kidney and/or the pres-
ence of subclinical kidney injury.76 Urine and plasma molecular profiles 
have also highlighted a cluster of biomarkers associated with moderate-
ly increased albuminuria that could predict cardiorenal damage. The evi-
dent molecular disparities are related to alterations in several 
processes: inflammation and immune cell response; blood coagulation; 
vascular remodelling; apoptosis, particularly that associated with endo-
plasmic reticulum stress; oxidative stress; endothelial damage and vas-
cular stiffness; and blood/immune cell adhesion, among others.77–84

Thus, an early increase in the circulating levels of one or more of these 
factors might help to identify patients at risk of target organ damage and 
albuminuria. For instance, in patients with hypertension and high- 
normal albuminuria, increased plasma levels of the acute phase proteins 
are associated with different albuminuria outcomes.85,86 Indeed, several 
of these biomarkers are elevated in patients who have progressed in 
their level of albuminuria during RAS blockade, and are also associated 
with resistant albuminuria. Overall, the molecular findings might reflect 
a systemic pro-oxidative and inflammatory state that could be a mech-
anistic link between early albuminuria, even within the ‘normal’ range, 
and cardiorenal disease. Analysis of the urine peptidome is another sys-
tems biology approach that has aided in the assessment of cardiorenal 
risk in the pre-albuminuric stages.7,87 For example, the multipeptide 
classifier, CKD273 (composed of 173 peptides), predicts the future de-
velopment of albuminuria in patients with T2DM,88 and variants of this 
classifier predict the future decrease of eGFR better than albuminuria in 
individuals with normal eGFR.89 Interestingly, the CKD273 classifier is 
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characterized by reduced levels of collagen fragments in urine and is as-
sociated with kidney fibrosis, suggesting that it reflects the pathophysio-
logical process of diminished collagen degradation leading to kidney 
fibrosis.90 In turn, a 150-peptide classifier, also mostly composed of col-
lagen fragments, identifies individuals with obesity and with early-stage 
obesity-related nephropathy.91

Genetic biomarkers
Available data support the genetic pre-disposition to CKD suggested by 
family studies beyond Mendelian kidney disease.92 The relevance of gen-
etics for cardiorenal disease has been mainly demonstrated through poly-
genic risk scores (PRS) for kidney function, and their association with 
circulating markers and incident kidney disease.93 While a genetic associ-
ation between albuminuria, cardiometabolic disease, and BP has been 
previously described,94 there is scarce information on the integrated gen-
etic background-risk for CKD in the form of PRS. In patients with T2DM, 
PRS have been associated with risk of CKD.95 PRS are also available for 
other prevalent conditions (e.g. ischaemic heart disease), although gener-
ally these are based on genome-wide association studies (GWAS). It is 
clear from these studies that the current paradigms for primary CVD 
prevention incompletely capture the polygenic susceptibility to coronary 
artery disease,96 which might also be true for CKD. Indeed, the preva-
lence of high PRS was 10-fold greater than Mendelian defects in patients 
with early-onset myocardial infarction.97 Extrapolation of these data to 
patients with kidney disease suggests a polygenic genetic background in 
most cases of CKD with an unknown cause, as well as for many cases 
currently misdiagnosed as hypertensive or even diabetic CKD (i.e. having 
T2DM does not negate the risk of also having CKD due to genetic 
causes). Several GWAS have identified loci associated with higher risk 
of low GFR, higher albuminuria or rapid loss of eGFR, and although 
the number of identified loci continues to increase, none have yet 
been incorporated into a holistic approach to CKD or validated in rou-
tine clinical practice.98–100 It is likely that PRS based on deep genomic se-
quencing might offer more relevant information, but their eventual 
clinical use must await further investigation and advances in technology.

Current management of 
cardiorenal disease targeting 
albuminuria as a primary outcome
Most of the evidence on the management of cardiorenal disease derives 
from patients with eGFR <60 mL/min/1.73 m2 and albuminuria. Patients 
with albuminuria accompanied by preserved eGFR undergo similar ther-
apy to their peers with eGFR <60 mL/min/1.73 m2. Yet, only widespread 
albuminuria assessment will identify patients with early CKD, thereby al-
lowing fast intervention measures. Early diagnosis of CKD before irre-
versible renal damage is of particular importance in view of the 
evidence discussed above. Treatments based on angiotensin-converting 
enzyme inhibitors and angiotensin receptor blockers prevent the devel-
opment and progression of cardiorenal disease in patients with T2DM 
and/or CKD. Yet, despite the broad use of these drugs, the incidence 
of CKD continues to rise, reflecting the need to consider additional strat-
egies to prevent its development and progression before irreversible 
changes ensue. Along this line, several new classes of drugs have been 
shown to suppress albuminuria and/or prevent progression to kidney fail-
ure in patients with CKD and/or T2DM, including SGLT2is and MRAs. 
GLP1-RAs can also attenuate albuminuria, but their impact on loss of 
GFR is still under evaluation. In addition to pharmacological treatments, 

lifestyle interventions [particularly, regular physical activity (PA)] might 
also help to prevent CKD or attenuate its progression.

Physical activity
Recent meta-analytic evidence points to a dose–response association be-
tween PA levels and risk of CKD, with each 10 metabolic equivalents of 
task (MET)-hour/week associated with a 2% lower risk.101 Likewise, a re-
cent meta-analysis concluded that exercise not only improves kidney 
function in patients with CKD, but also improves several CVD risk fac-
tors (notably by reducing BP and body mass).102 Indeed, PA is inversely 
associated with the prevalence of several comorbidities linked to CKD 
progression, including obesity, T2DM and hypertension.103,104 Martens 
et al. studied the association of PA and sedentary behaviour with 
eGFR and albuminuria in 2258 participants of the Maastricht Study, 
and found that each extra daily hour of total PA or sedentary behaviour 
was associated with a more favourable or more adverse kidney function, 
respectively, with a mean increase or decrease in eGFR of 2.30 mL/min/ 
1.73 m2 and −0.71 mL/min/1.73 m2.105 They also found that, compared 
with individuals with the lowest levels of total PA, those with the highest 
levels had less kidney damage, with an odds ratio of having albuminuria 
levels of 15–30 mg/24 h or ≥30 mg/24 h of 0.63 and 0.84, respectively, 
whereas the opposite pattern was seen for a more sedentary behav-
iour.105 Likewise, Böhm et al. assessed the association between self- 
reported PA and renal outcomes in high-risk patients over a median 
follow-up of 56 months, finding that PA was inversely associated with re-
nal outcomes such as doubling of creatinine or kidney failure, whereas 
performing PA ≥2 times/week was associated with lower risk of renal 
outcomes and lower incidence of new albuminuria compared with lower 
PA levels.106 There is also evidence of the benefits of PA on renal func-
tion in people at high-risk based on randomized controlled trials (RCTs). 
For instance, Hellberg et al. performed a single-centre RCT in patients 
with CKD with eGFR ∼22 mL/min/1.73 m2 randomized to either aerob-
ic plus balance exercise or aerobic plus strength exercise, during 
12 months of training intervention.107 The authors found a significant 
treatment difference for albuminuria, which decreased by 33% in the 
strength-training group. Similarly, in patients with T2DM, a 4-month 
interval of walking-training reduced albuminuria by 45% vs. the opposite 
trend in controls.108 Overall, PA appears to be an important component 
in the prevention and treatment of CKD and CVD, reducing the health-
care burden and costs imposed by this condition.109

New cardiorenal drugs
Sodium-glucose cotransporter-2 
inhibitors
SGLT2is reduce the UACR and prevent kidney failure progression in pa-
tients both with and without T2DM.110,111 These agents also prevent 
the development of HFrEF and HFpEF, and reduce cardiovascular out-
comes across HF phenotypes with and without T2DM.112 SGLT1 and 
SGLT2 are expressed in the proximal renal tubule where they promote 
glucose absorption, and inhibition of their function results in an increase 
in urinary glucose and sodium excretion in patients with normal or mod-
erately reduced renal function. Kidney and cardiovascular protective 
mechanisms associated with SGLT2is in the kidney have been reviewed 
elsewhere113 and include diminished delivery of sodium chloride to the 
macula densa with a consequential effect on tubule-glomerular feed- 
back and a reduction in proinflammatory cytokines, oxidative stress, 
uric acid, renal fibrosis, and sympathetic nervous activity, together 
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with release of sirtuins. Nonetheless, their individual contribution to 
preventing the progression of renal disease and cardiovascular out-
comes remains controversial. While the relative efficacy and safety of 
SGLT2is in preventing renal disease in patients with UACR of 
10–30 mg/g remains to be evaluated in a specifically designed RCT, in 
post-hoc analyses, the SGLT2i empagliflozin improved cardiovascular 
and kidney outcomes in all risk categories determined as per the two- 
dimensional KDIGO classification framework, with no evidence of het-
erogeneity across risk categories.114 Specifically, in low-risk patients 
(eGFR >60 mL/mL/min/1.73 m2 and UACR <30 mg/g), the hazard ratio 
(HR) for all-cause mortality was 0.68 (95% CI 0.49–0.94) and the HR for 
doubling of serum creatinine, kidney failure or renal death was 0.31 (95% 
CI 0.16–0.63) among SGLT2i-treated patients. Similar data, with no evi-
dence of heterogeneity across risk categories for the primary outcome 
and for other cardiovascular and kidney outcomes, were reported for 
canagliflozin.115 Both studies were, however, conducted in populations 
with T2DM and pre-existing high cardiovascular risk. As pointed out 
above, while SGLT2is have been shown to be efficacious in patients 
with T2DM and either HFrEF or HFpEF, there is recent evidence 
from the Effect of Sotagliflozin on Cardiovascular and Renal Events in 
Patients with Type 2 Diabetes and Moderate Renal Impairment Who 
Are at Cardiovascular Risk (SCORED) trial that SGLT1 inhibition may 
add to the benefits of SGLT2is in patients with T2DM.116,117 Data 
from patients with T2DM and CKD suggest that the SGLT1/2 inhibitor 
sotagliflozin significantly reduces the occurrence of non-fatal and fatal 
stroke as well as non-fatal and fatal myocardial infarction by around 
30%.18 In contrast, a meta-analysis118 of SGLT2is in patients with 
T2DM failed to reveal a significant reduction in stroke, despite a reduc-
tion in BP and an 11% reduction in myocardial infarction, likely due to a 
reduction in pre-load and myocardial oxygen demands in patients with 
pre-existent ischaemic heart disease. Further studies are needed to de-
termine the efficacy and safety of sotagliflozin in patients with T2DM, as 
well as RCTs comparing sotagliflozin to more selective SGLT2is such as 
empagliflozin.

Glucagon-like peptide 1 receptor agonists
GLP1-RAs reduce UACR and have been suggested to prevent the pro-
gression of renal disease in patients with T2DM independently of their 
glucose lowering effects, which is associated with their anti- 
inflammatory, antioxidant, antifibrotic, and renal natriuretic effects.119

In addition, they help to prevent the development of non-fatal and fatal 
stroke and myocardial infarction, likely related to the effect of GLP1 on 
platelet activation and atherosclerotic plaque stability.120 In the 
Dulaglutide and cardiovascular outcomes in Type 2 diabetes 
(REWIND) trial, in which 68% of the participants did not have known 
CVD, the GLP1-RA dulaglutide reduced major adverse cardiovascular 
events both in patients with and without prior CVD.121 GLP1-RAs 
also reduce appetite and body weight, and semaglutide reduces weight 
independently of the presence of T2DM.122 Thus, GLP1-RAs appear ef-
fective both in the prevention and treatment of T2DM and of obesity. 
Indeed, their effects on UACR and body weight point to important 
roles in patients with T2DM, hypertension and visceral obesity with al-
buminuria during the early stages of renal disease before the develop-
ment of potentially irreversible changes in renal function and decreases 
in eGFR. More recently, tirzepatide, a dual GIP/GLP-1 receptor 
co-agonist approved for the treatment of T2DM in the USA and 
Europe,123 was superior to semaglutide with respect to the mean 
change in the glycated haemoglobin level from baseline to 40 weeks 
in T2DM and caused a larger decrease in body weight and systolic BP 
and had a better impact on lipid levels.124 This overall improved profile 

may result in improved cardiovascular and renal outcomes, which are 
being explored in large phase 3 RCTs expected to be completed by 
2024 (NCT04847557 and NCT04255433). Tirzepatide once weekly 
also provided substantial and sustained reductions in body weight in ob-
ese patients or overweight patients at high cardiovascular risk that were 
also associated with lower BP, triglycerides, and LDL cholesterol, and 
increased HDL cholesterol vs. placebo.125 In addition, the comparison 
of SGLT2is and GLP1-RAs presented a similar risk of HF and less risk of 
renal events, on the contrary, the comparison of GLP1-RAs vs. SGLT2is 
was associated with a slightly lower risk of major adverse cardiovascular 
events.126 Thus indicating that both classes of drugs differ by their car-
diorenal effects.

Mineralocorticoid receptor antagonists
The steroidal MRAs spironolactone and eplerenone reduce UACR but 
are contraindicated in patients with severe renal disease (eGFR 
<30 mL/min/1.73 m2) owing to the risk of hyperkalaemia. The under-
lying mechanisms associated with their effects on UACR and CKD pro-
gression have been recently reviewed and include reductions in renal 
inflammation, oxidative stress, and renal fibrosis.127 However, while 
they also reduce BP in patients with resistant hypertension and cardio-
vascular outcomes in patients with HFrEF, and likely HFpEF, their use 
remains suboptimal even in patients with normal renal function due 
to the fear of hyperkalaemia. The development and clinical use of non- 
steroidal MRAs such as finerenone has, however, been associated with 
a lower incidence of hyperkalaemia and a slower progression to kidney 
failure, as well as a reduction in cardiovascular outcomes in patients 
with diabetic nephropathy.128–131 The non-steroidal MRAs have a dif-
ferent mode of binding to the mineralocorticoid receptor than the ster-
oidal MRAs, interfering with a different panel of transcription 
coactivator partners, and they also have a different distribution be-
tween the kidney and heart.127 The steroidal MRAs are mainly distrib-
uted in the kidneys and less in the heart whereas the non-steroidal 
MRAs are more evenly distributed between kidneys and heart, which 
may, in part, account for the lower incidence of hyperkalaemia. Of par-
ticular interest is the finding of the Finerenone in Reducing 
Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease 
(FIGARO) trial, in which 62% of patients showed UACR levels 
>30 mg but eGFR >60 mL/min/1.73 m2, and in whom finerenone re-
duced cardiovascular outcomes (mainly hospitalization for HF) and pro-
gression to kidney failure.130 While there was twice the incidence of 
hyperkalaemia in patients randomized to finerenone in the FIGARO 
trial, the percentage of patients who discontinued finerenone due to 
hyperkalaemia was only around 1%.131 Thus, in CKD Stages 1–3, finer-
enone appears to be well tolerated and prevents disease progression in 
patients with and without an SGLT2i and with and without a 
GLP1-Ra.130,131 Potentially of even greater importance is the recent 
finding that high serum aldosterone levels in patients with CKD are in-
dependently associated with an increased risk for kidney disease pro-
gression, irrespective of the presence of T2DM.132 Thus, in view of 
the recent findings that primary aldosteronism can occur in patients 
without hypertension, has a higher prevalence than previously thought 
in essential hypertension (being present in >20% of patients with resist-
ant hypertension133), and that high aldosterone levels predict kidney 
disease progression, screening for albuminuria and the use of MRAs 
in patients with hypertension is a promising strategy for the prevention 
of cardiorenal disease.

The use of SGLT2is, GLP1-RAs and MRAs alone or in combination 
with RAS blockers is promising for the prevention of cardiorenal 

D
ow

nloaded from
 https://academ

ic.oup.com
/eurheartj/advance-article/doi/10.1093/eurheartj/ehac683/6881117 by guest on 04 April 2023

Humberto_Rodriguez

Humberto_Rodriguez

Humberto_Rodriguez

Humberto_Rodriguez

Humberto_Rodriguez

Humberto_Rodriguez

Humberto_Rodriguez

Humberto_Rodriguez

Humberto_Rodriguez

Humberto_Rodriguez

Humberto_Rodriguez

Humberto_Rodriguez



Prevention of cardiorenal damage                                                                                                                                                                1119

outcomes in patients with albuminuria, including those with UACR 
<30 mg/g and eGFR >60 mL/min/1.73 m2. Moreover, current data sug-
gesting that the combination of a low dose of the SGLT2i empagliflozin 
and the non-steroidal MRA finerenone is additive in reducing mortal-
ity.128 Further studies will be needed to evaluate the efficacy, safety, 
and cost effectiveness of the aforementioned drugs to prevent the de-
velopment of CKD in patients with early albuminuria (UACR 10– 
30 mg/g) and an eGFR >60 mL/min/1.73 m2.

Conclusions
The incorporation of albuminuria into the definition of CKD has proven 
its value as a major risk factor for the progression of cardiorenal disease, 
and represents a scalable and drug-actionable clinical biomarker and 
target. However, implementation and awareness issues limit its value 

in routine clinical practice. Additionally, there is an unmet clinical 
need for biomarkers that identify earlier stages of CKD-associated car-
diovascular risk. Importantly, beyond the CKD-defining UACR thresh-
old of 30 mg/g, values of albuminuria of 10–30 mg/g––and even 
lower––are also associated with increased cardiorenal risk. Lower 
UACR thresholds or novel biomarkers, or a combination of both, 
should be assessed for the initiation of cardiorenal-protective interven-
tions at earlier stages (Table 2). Adequate management needs to start 
ideally in adolescence and be maintained over the lifespan using strat-
egies to stratify individual cardiorenal risk and guide interventions. 
These may range from PA to drugs recently approved to mitigate car-
diorenal risk in patients with albuminuria and/or decreased eGFR in dia-
betics and/or non-diabetics, such as SGLT2is, GLP1-Ras, and MRAs, on 
top of other CVD prevention strategies (Figure 2). Widespread imple-
mentation of opportunistic or systematic albuminuria screening and 
therapy to reduce albuminuria may, in fact, prevent or delay cardiorenal 

Table 2 Take-home messages

1. Children with preterm delivery or low birth weight should be monitored regularly for hypertension, excessive weight gain, hyperglycaemia, and 
albuminuria throughout life

2. In adolescents with obesity, control of body weight gain is needed to diminish cardiorenal risk

3. eGFR and albuminuria should be ideally estimated in all adults visiting primary health centres, and certainly in those with any condition associated with 
increased renal or cardiovascular risk. This is the only way to avoid the ‘blind spot’ of albuminuria and preserved renal function

4. Early and regular detection of albuminuria represents a scalable and cost-effective tool to predict and prevent cardiorenal outcomes

5. New drugs such as SGLT2is, GLP1-RAs, and non-steroidal MRAs should be considered from the earliest stages of cardiovascular and renal disease to 
prevent the occurrence of irreversible renal disease

6. The American Diabetes Association and the 2022 Kidney Disease Improving Global Outcomes Guidelines include recommendations for the use of 
these new drugs to prevent cardiovascular and renal disease

7. Further advances in predictive molecular biomarkers and their integration into clinical practice will facilitate the early identification of patients at 
increased cardiorenal risk

eGFR, estimated glomerular filtration rate; MRA, mineralocorticoid receptor antagonist; GLP1-RA, glucagon-like peptide 1 receptor agonist; SGLT2i, sodium-glucose cotransporter  
2 inhibitor.

Figure 2 Different clinical settings linked to albuminuria development and evolution, and its adequate management.
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outcomes and challenge the dismal projections for the burden of cardi-
orenal disease by 2040.
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